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Online effective backscattering estimation for
ring laser gyro
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Lock-in phenomenon in ring laser gyroscopes is directly related to effective backscattering, which includes
both backscattering and nonuniform loss. Effective backscattering often differs in different states and
can only be reflected in a working state via online estimation in the working state. Moreover, effective
backscattering can result in the intensity modulation of beams in the opposite directions. The effective
backscattering parameters can be obtained by measuring the weak modulations in the intensity signals
under different rotation rates and by using the curve-fitting method. This letter demonstrates the online
estimation of backscattering.
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Ring laser gyroscopes are now widely used in inertial nav-
igation systems[1], and the performances of these systems
are significantly affected by the precision of these gyro-
scopes. The main error source in ring laser gyroscopes is
the lock-in effect. Thus, the lock-in threshold should be
reduced to enhance the gyroscope’s performance[2,3].

The lock-in of ring laser gyroscopes is related to both
backscattering and nonuniform loss[4−6]. Square ring
laser gyroscopes have four mirrors, and each mirror has
scattering toward all directions. The scattering toward
the incident direction is called backscattering, which can
also be generated by the aperture. Backscattering can
cause mutual energy coupling between beams in oppo-
site directions of the cavity and has been proven to
result in the lock-in phenomenon[4]. Aronowitz intro-
duced a new type of energy coupling called “nonuniform
loss,” which spatially varied over the cavity length[6]. He
stated that the behavior of nonuniform loss was the same
as that of backscattering[6]. Thus, mathematically, the
effect of both backscattering and nonuniform loss can be
generalized as “effective backscattering,” whose param-
eters should be measured. This letter discusses effective
backscattering, which includes both backscattering and
nonuniform loss.

Some methods have been proposed to measure
backscattering directly using a passive cavity. How-
ever, these methods cannot estimate the contribution
of nonuniform loss[7−9] nor reflect backscattering in the
working state. Real backscattering and lock-in threshold
can only be reflected in online estimation. Thus, this let-
ter performs online backscattering estimation, where the
backscattering parameters are obtained by measuring the
modulation of the light intensity signals at different an-
gle rates and by using the curve-fitting method.

The structure of a ring laser gyroscope is shown in
Fig. 1. The housing is constructed from a crystallized
glass block, into which holes are drilled for the tubes and
electrodes[10]. The mirrors are attached to the block us-
ing optical contacts. The big hole in the center is used
to mount the dither wheel for the bias[11]. The whole
body of the ring laser gyroscope is designed to be highly
symmetric to ensure good performance.

The cavity has two beams, namely, the clockwise (CW)
and counterclockwise (CCW) beams. Their electromag-
netic fields are E1ei(w1t+χ1) and E2ei(w2t+χ2), respec-
tively, where En is the amplitude and wnt + χn is the
instantaneous phase. The backscattering in the mirrors
and aperture causes a part of the CW beam to travel
into the CCW direction every trip around the cavity and
vice versa. The complex backscattering coefficients are
denoted as r1eiε1 and r2eiε2 , respectively, where rn is
the backscattering amplitude and εn is the additional
phase angle. The backscattering effect is shown in Fig.
2, where ψ is the beat frequency of the gyroscope.

The active media are considered as thermally mov-
ing atoms that acquire nonlinear electric dipole moments
under the action of the field according to the laws of
quantum mechanics by Lamb[12]. Based on Lamb’s semi-
classical theory, Aronowitz developed the following self-
consistent equation for ring laser gyroscopes[13].

〈L〉
c

İ1 = (α1−β1I1−θ12I2) I1−2r2

√
I1 · I2 cos (ψ + ε2) ,

〈L〉
c

İ2 = (α2−β2I2−θ21I1) I2−2r1

√
I1 · I2 cos (ψ − ε1) ,

ψ̇ = Ω +
c

〈L〉
[
r2

√
I2

I1
sin (ψ + ε2)

+ r1

√
I1

I2
sin (ψ − ε1)

]
, (1)

where 〈L〉 is the path length of the loop, c is the velocity
of light, c/〈L〉 is the longitudinal mode spacing, and I1

and I2 are the dimensionless intensities of the two beams.
In the two amplitude equations above, α represents
the gain minus loss every loop, β is the self-saturation
coefficient, θ is the mutual saturation coefficient, and
Ω is the input angle rate. The mode pulling term is not
written explicitly because it can only induce the constant
scale factor correction[14]. Aronowitz[6] introduced a new
type of coupling called nonuniform loss. Mathematically,
nonuniform loss can be included in the backscattering
term. Therefore, the basic form of Eq. (1) does not
change.
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Fig. 1. Schematic of a ring laser gyroscope.

Fig. 2. Diagram of backscattering.

The structure of the ring laser gyroscope is designed to
be symmetric such that the following are satisfied:

α = α1 = α2,

β = β1 = β2,

θ = θ12 = θ21,

r = r1 = r2.

(2)

After the following substitutions:

ε = ε1 + ε2,

φ = ψ + π +
1
2

(ε1 − ε2) ,

I =
1
2

(I1 + I2) ,

i =
1
2

(I1 − I2) ,

(3)

where I is the sum of the light intensities of the two
beams and i is the difference between the light intensi-
ties, Eq. (1) can be written as[13]

〈L〉
c

İ = [α− (β + θ) I] I + 2Ir cos φ cos ε,

〈L〉
c

i̇ = i (α− 2βI) + 2Ir cosφ cos ε,

φ̇ = Ω − 2c

〈L〉r(cos ε sinφ +
i

I
sin ε cos φ).

(4)

I is believed to have steady and oscillation components
I0 and Ĩ, respectively[15]:

I = I0 + Ĩ . (5)

Gao[15] analyzed Eq. (4) and obtained the following
solution:

I0 =
α

β + θ
,

Ĩ = I0Ωr cos ε
Ω sin (Ωt) + Ωα cos (Ωt)

Ω2
α + Ω2

,

i = I0Ωr sin ε
Ωi sin (Ωt)− Ω cos (Ωt)

Ω2
i + Ω2

,

(6)

where

Ωα =
c

〈L〉α, Ωr =
2cr

〈L〉 , Ωi =
β − θ

β + θ
· Ωα. (7)

The second and third equations of Eq. (6) can be writ-
ten as

Ĩ

I0
= Ωr cos ε

sin (Ωt + ηI)√
Ω2

α + Ω2
,

i

I0
= Ωr sin ε

sin (Ωt + ηi)√
Ω2

i + Ω2
,

(8)

After the following substitutions:

IA =
Ωr cos ε√
Ω2

α + Ω2
,

iA =
Ωr sin ε√
Ω2

i + Ω2
.

(9)

Equation (8) can then be written as

Ĩ

I0
= IA sin (Ωt + ηI) ,

i

I0
= iA sin (Ωt + ηi) .

(10)

If the value of Ω is changed, different values of IA and
iA can be obtained. The parameters of Eq. (9) can be
evaluated using the following curve-fitting method:

y = a/
√

b2 + x2, (11)

where x is Ω and y can be IA or iA. Nonlinear curve
fitting must be used. This letter uses Newton’s least
square curve-fitting method.

A square ring laser gyroscope built in our laboratory
was used to perform the experiment. The gyroscope was
placed on a rotation table, and the wavelength of the laser
was 632.8 nm. The longitudinal mode spacing c/ 〈L〉 was
1071 MHz. Signals Ĩ and i are very small and can there-
fore be easily covered by noise. Hence, the beat frequency
signals must be used to demodulate Ĩ and i[16]. The ro-
tation rate of the table was changed from 1 to 9 ◦/s, and
both voltage representations of IA and iA for every rota-
tion rate were recorded.

The experimental results are shown in Fig. 3. Data
points with ‘+’ denote the experimental data, and the
continuous line is the curve after fitting.

After curve fitting, the parameters of Eq. (9) can be
obtained as

Ωα = 9.9088 ◦/s, (12)
Ωi = 6.5344 ◦/s, (13)

Ωr cos ε = 0.0307 ◦/s, (14)
Ωr sin ε = 0.2215 ◦/s. (15)
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Fig. 3. Experimental results: Variations of (a) IA and (b) iA
with rotation rate.

According to Eqs. (11) and (12), both IA and iA atten-
uate with the increase of rotation rate, but their curves
are different. The shape of IA is 1√

Ω2
α+Ω2

, whereas the

shape of iA is 1√
Ω2

i +Ω2
. The curve of iA is sharper than

that of IA because Ωα > Ωi. From Eq. (7), the following
can be obtained:

Ωi

Ωα
=

β − θ

β + θ
. (16)

Moreover, the values in Eqs. (11) and (12) can be used
to obtain

β − θ

β + θ
=

6.5344 ◦/s
9.9088 ◦/s

= 0.66. (17)

Equation (17) shows that the difference between Ωα

and Ωi is a result of the self- and mutual saturations be-
tween the two beams.

According to Eqs. (14) and (15),

Ωr =
√

(Ωr cos ε)2 + (Ωr sin ε)2 = 0.2237 ◦/s. (18)

The unit of Ωr in Eq. (18) is expressed in degrees per
second (◦/s). Thus, the scale factor must be applied to
get the value of Ωr in hertz. The scale factor of the gy-
roscope is 1 930 Hz/(◦/s). Therefore, the value of Ωr in
hertz is

Ωr = 431.7 Hz. (19)

According to the second term in Eq. (7), the value of
the backscattering magnitude r can be evaluated as

r =
Ωr 〈L〉

2c
= 6.3× 10−7. (20)

If Eq. (14) is divided by Eq. (15), then

tagε =
Ωr sin ε

Ωr cos ε
=

0.2215 ◦/s
0.0307 ◦/s

= 7.215. (21)

The backscattering angle ε can be evaluated as

ε = arctag7.215=82.1◦. (22)

In conclusion, we experimentally demonstrate the on-
line estimation of backscattering by evaluating the mod-
ulations of the intensity signals at different input angle
rates. The results are helpful in the assessment of ring
laser gyroscopes. They can also serve as guide in the
reduction of lock-in threshold and further enhancement
of ring laser gyroscope performance.
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